高中数学知识点总结(精选15篇)
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.
2.求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).
可导函数的极值,可通过研究函数的'单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
(4)检查f(x)的符号并由表格判断极值.
3.求函数的值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A E)—f(A),发现的因子E就是我们所说的导数f(A)。
二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
★高中数学导数要点
1、求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
2、求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的.所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的
变化情况:
(4)检查f(x)的符号并由表格判断极值。
3、求函数的最大值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。
求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。
4、解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
5、导数在实际生活中的应用:
实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。
高中数学知识点总结12
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)数量:只有大小,没有方向的量.
(3)有向线段的三要素:起点、方向、长度.
(4)零向量:长度为0的向量.
(5)单位向量:长度等于1个单位的`向量.
(6)平行向量(共线向量):方向相同或相反的非零向量.
※零向量与任一向量平行.
(7)相等向量:长度相等且方向相同的向量.
2.向量加法运算:
⑴三角形法则的特点:首尾相连.
⑵平行四边形法则的特点:共起点
高中数学知识点总结13
1.万能公式令tan(a/2)=tsina=2t/(1 t^2)cosa=(1-t^2)/(1 t^2)tana=2t/(1-t^2)
2.辅助角公式asint bcost=(a^2 b^2)^(1/2)sin(t r)cosr=a/[(a^2 b^2)^(1/2)]sinr=b/[(a^2 b^2)^(1/2)]tanr=b/a
3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a b) sin(a-b)]/2cosa_sinb=[sin(a b)-sin(a-b)]/2cosa_cosb=[cos(a b) cos(a-b)]/2sina_sinb=-[cos(a b)-cos(a-b)]/2sina sinb=2sin[(a b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a b)/2]cosa cosb=2cos[(a b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a b)/2]sin[(a-b)/2]
向量公式:
1.单位向量:单位向量a0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i y向量j|向量OP|=根号(x平方 y平方)
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方 (y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2 y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2 y1y2)根号(x1平方 y1平方)_根号(x2平方 y2平方)
5.空间向量:同上推论(提示:向量a={x,y,z})
6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
7.|向量a向量b|平方=|向量a|平方 |向量b|平方2向量a_向量b=(向量a向量b)平方
高中数学知识点总结14
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的.过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高中数学知识点总结15
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr 2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。
2、圆锥体:表面积:πR2 πR[(h2 R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。
3、a—边长,S=6a2,V=a3。
4、长方体a—长,b—宽,c—高S=2(ab ac bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱锥S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1 S2 (S1S2)^1/2]/3。
8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1 S2 4S0)/6。
9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch 2S底,V=S底h=πr2h。
10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
11、r—底半径h—高V=πr^2h/3。
12、r—上底半径,R—下底半径,h—高V=πh(R2 Rr r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2 h2)/6=πh2(3r—h)/3。
15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12 r22) h2]/6。
16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。
17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2 d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2 Dd 3d2/4)/15(母线是抛物线形)。