硬盘基本知识大全

硬盘的基本知识介绍

  硬盘基本知识

  1.磁道,扇区,柱面和磁头数

  硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些参数可以得到硬盘的容量,基计算公式为:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

  要点:

  (1)硬盘有数个盘片,每盘片两个面,每个面一个磁头

  (2)盘片被划分为多个扇形区域即扇区

  (3)同一盘片不同半径的同心圆为磁道

  (4)不同盘片相同半径构成的圆柱面即柱面

  (5)公式:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

  (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区

  2.簇

  “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘参数块(BPB)中获取。簇的概念仅适用于数据区。

  本点:

  (1)“簇”是DOS进行分配的最小单位。

  (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。

  (3)簇的概念仅适用于数据区。

  3.扇区编号定义:绝对扇区与DOS扇区

  由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始(注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),2

  1、容量

  容量可以说是用户对硬盘认识最多的一个技术指标,它的单位是兆字节(MB)或千兆字节(GB)。影响容量的两个因素是单碟容量和碟片数量。顾名思义,单碟容量也就是在单张盘片上所能存储的信息容量,单盘容量越大,实现大容量硬盘也就越容易,寻找数据所需的时间也相对减少。现在硬盘的单碟容量是越做越大了,一般都可以达到20G。单碟容量提高的同时,硬盘的生产成本也随之而降低,这也是为什么硬盘厂商竞先推出高单碟容量的硬盘产品。你有时在检测硬盘时可能会发现厂家标称的容量和电脑检测的容量不一致,这是由于他们采用的换算单位不同,厂家多以1000进制换算,即1MB=1000byte、1GB=1000MB,而电脑中多用1024进制换算。

  2、缓存

  由于CPU运算与硬盘读取之间存在着巨大的速度差异,为了解决硬盘在读写数据时CPU的等待问题,在硬盘上设置适当的高速缓存,以解决二者之间速度不匹配的问题。硬盘缓存与主板上的高速缓存作用一样,是为了提高硬盘的读写速度,当然缓存越大越好。目前IDE硬盘的高速缓存一般为512K到2M之间,主流硬盘的数据缓存应该为2MB,而在SCSI硬盘中最高的数据缓存现在已经达到了16MB。

  3、转速

  转速指的.是硬盘内电机主轴的转动速度,其单位是RPM(RoundPerMinute,每分钟旋转次数),它直接影响硬盘的数据传输率,理论上转速越快数据传输率就越大。目前IDE接口的硬盘主轴转速一般为5400和7200rpm(转/秒),主流硬盘的转速为7200RPM,至于SCSI硬盘的主轴转速一般可达7200到10,000rpm,而最高转速的SCSI硬盘转速高达15,000rpm。更快的转速可以使盘片转动一周的时间减短,使平均等待时间和平均寻道时间减短,更快地寻找所需要的数据,同时硬盘的内部传输率也会提高,使读写速度加快。

  4、平均寻道时间

  这个指标指磁头从得到指令到寻找到数据所在磁道的时间,它是代表硬盘读取数据的能力,单位为毫秒,需要注意的是它与平均访问时间有差别。平均寻道时间越小越好,现在选购硬盘时应该选择平均寻道时间低于9毫秒的产品。

  5、内部数据传输率

  内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用Mb/S或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/S(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为131Mbps,但如果按MB/S计算就只有16.37MB/s。目前市场上主流硬盘的最大内部数据传输率为30MB/s到45MB/s,这比UltraATA/100的100MB/s低多了,由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。

  6、外部数据传输率

  这是指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂勾的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用的是UltraATA/66,它的最大外部数据率即为66.7MB/s。而采用目前最新的UltraATA/100接口最大外部数据传输率即可达到100MB/s。对于SCSI硬盘,若采用最新的Ultra160/mSCSI接口标准,其数据传输率可达160MB/s,FibraChannel的最大外部数据传输将可达200MB/s!

  7、MTBF(连续无故障时间)

  它指硬盘从开始运行到出现故障的最长时间,单位是小时。一般硬盘的MTBF至少在30000或40000小时。这项指标在一般的产品广告或常见的技术特性表中并不提供,需要时可专门上网到具体生产该款硬盘的公司网址中查询。

  除了以上提到的这些技术指标外,影响硬盘性能的还有道至道时间、硬盘表面温度等因素,这里就不再赘述了。说实话,一口气说这么多专业性挺强的内容,不但你可能难以消化,就是我的头都大了。但之所以坚持讲这些术语常识,只是希望你对硬盘能有一个初步的了解,不至于对硬盘一无所知。

  硬盘基本知识 篇3

  NVMe协议的定义及特点

  NVMe,全称为Non-Volatile Memory Express,我们拆开翻译,Non-Volatile Memory中文译名为非易失性存储器。

  熟悉存储的都知道,存储器根据断电后是否能够存储数据为标准分为易失性和非易失性,我们常用的优盘、闪存卡等存储产品就是非易失性存储器,当然固态硬盘产品也是非易失性存储器了。而此处的Express,就是类似于PCIe中那个e,指的是通道或是规范。

  NVMe协议和SATA的异同

  SATA是一种物理接口类型,执行的AHCI协议标准,是目前最为廉价和常见的.固态硬盘接口,缺点便是有着6Gbps的极限读写限制,无法满足专业领域对于无延时、极致读写的要求。

  PCIe实际上是通道协议,在物理表现上就是主板上那些PCIe接口。这些通道协议,属于总线协议,能够直接连接CPU,因而几乎没有延时,成为NVMe标准的绝佳伴侣。而在AHCI标准时代,受制于协议,几乎无法发挥PCIe的实际性能,同时根据传输速度不同,PCIe还可分为X2/X4/X8

  M.2接口在固态硬盘领域,更多的是用于和传统的SATA固态硬盘进行区分的名词。根据主控执行的协议不同,M.2接口又分为NVMe协议以及AHCI协议的固态硬盘。根据协议不同,M.2固态硬盘在性能上也会有着相当的差异。

  总结:支持nvme协议的固态硬盘虽然性能好,但是价格也贵,在接口一样的情况下,主板一定要支持nvme协议!

  硬盘基本知识 篇4

  固态硬盘出现已经有很长一段时间了,很多朋友也已经用上了固态硬盘。不过鉴于目前的固态硬盘容量较小而价格太高,我们主流装机依然都是选购传统的机械硬盘,而固态硬盘则多数出现在高端配置装机中。

  不过随着技术的发展,固态硬盘逐渐成为主流也是趋势。下面我们来介绍下固态硬盘的好处以及固态硬盘和普通硬盘的区别。

  固态硬盘的好处:

  说起固态硬盘的好处,首冲其当的就是速度比普通硬盘速度快,通过测试我们可以发现固态硬盘的读取速度是普通硬盘的近2倍。另外固态硬盘更稳定没有噪音等。

  固态硬盘和普通硬盘的区别:

  1. 启动快,没有电机加速旋转的过程。

  2. 不用磁头,快速随机读取,读延迟极小。根据相关测试:两台电脑在同样配置的电脑下,搭载固态硬盘的'笔记本从开机到出现桌面一共只用了18秒,而搭载传统硬盘的笔记本总共用了31秒,两者几乎有将近一半的差距。

  3. 相对固定的读取时间。由于寻址时间与数据存储位置无关,因此磁盘碎片不会影响读取时间。

  4. 基于DRAM的固态硬盘写入速度极快。

  5. 无噪音。因为没有机械马达和风扇,工作时噪音值为0分贝。某些高端或大容量产品装有风扇,因此仍会产生噪音。

  6. 低容量的基于闪存的固态硬盘在工作状态下能耗和发热量较低,但高端或大容量产品能耗会较高。

  7. 内部不存在任何机械活动部件,不会发生机械故障,也不怕碰撞、冲击、振动。这样即使在高速移动甚至伴随翻转倾斜的情况下也不会影响到正常使用,而且在笔记本电脑发生意外掉落或与硬物碰撞时能够将数据丢失的可能性降到最小。

  8. 工作温度范围更大。典型的硬盘驱动器只能在5到55摄氏度范围内工作。而大多数固态硬盘可在-10~70摄氏度工作,一些工业级的固态硬盘还可在-40~85摄氏度,甚至更大的温度范围下工作。

  9. 低容量的固态硬盘比同容量硬盘体积小、重量轻。但这一优势随容量增大而逐渐减弱。直至256GB,固态硬盘仍比相同容量的普通硬盘轻。

  固态硬盘目前最大的不足是价格昂贵,相对普通硬盘,价格方面没有任何优势,用户在使用的时候其实感觉应用差距也不明显,另外固态硬盘容量小,无法满足大存储数据需求。不过随着技术的改进,未来固态硬盘前景还是必然趋势的。

  硬盘基本知识 篇5

  固态硬盘参数1闪存颗粒

  固态硬盘是通过NAND 闪存颗粒(U盘都会用到的)来存储数据,因此,闪存颗粒尤为重要。其是由内部若干个储存电荷的Cell(存储单元)组合而成,Cell的种类决定了闪存颗粒的种类;根据Cell的种类,可分为SLC、MLC、TLC颗粒。

  (不同种类颗粒内的Cell示意图,0与1代表存储的数据)

  SLC: 一个存储单元存1bit的数据

  MLC:一个存储单元存2bit的数据

  TLC: 一个存储单元存3bit的数据

  在一个存储单元里面要表示多种数据就要采用不同的电压来区分,因此对于较高的电压,增压的过程与低电压相比需要更长的时间来完成,因此TLC访问数据时间最长,其次为MLC,最快为SLC。

  闪存颗粒速度排行:SLC>MLC>TLC

  说完闪存颗粒的速度,就不得不提一下闪存颗粒另外一大指标-----寿命。SSD的寿命很大一部分是取决于闪存颗粒的类型,SSD的寿命指标为P/E次数(完全擦写),1次P/E指硬盘完全写满一次并且擦除一次(由于工作原理不同,普通HDD硬盘不存在P/E限制)。SLC闪存多用于企业级存储,其擦写次数能达10万次,稳定性最好;目前25nm的MLC颗粒P/E 3000~5000次,TLC颗粒的P/E也有1000次以上,1000次P/E的概念:举个栗子对于100G的SSD而言,每天写满100G,能用1000天,大概能用三年的样子。专注TLC三万年的三(丧)星,旗下的TLC颗粒的840evo 120G网上测试的极限擦写次数竟达3409P/E,写入406.68 TB ,可见TLC的寿命也不容小觑。

  闪存颗粒寿命排行:SLC>MLC>TLC

  近几年主控芯片的发展,致使廉价的TLC也开始步入固态硬盘的市场,更多低价格的TLC固态硬盘开始普及,不过TLC的本身的缺陷仍然不容忽视,由于TLC单个存储单元存在8种电压状态,彼此之间容易出错,所以就不能不校验了,速度就由此拖慢,这也与市面上TLC的SSD用旧出现掉速的情况有关。TLC闪存的稳定性也是要考量的一大因素,没有强大的主控支持,也救不了TLC的固态硬盘,要挑一些具有相对成熟的主控芯片的产品。

  闪存颗粒价格排行:SLC>MLC>TLC

  小结:SLC闪存除企业与某些土豪外,实在不是我们寻常人的玩具。而MLC以其适中的寿命与性能,成为大部分的电脑发烧友、部分设计师、游戏玩家之必备(买买买),将大型单机游戏放进去更有强大读盘buff(增益效果)。而在日常使用中,不强调性能,仅是日常办公需要,看看开机秒数的,或者预算略紧的,不妨考虑下TLC,毕竟老话说得好:再慢的SSD也比hdd跑得快。

  固态硬盘参数2主控芯片

  主控就如cpu那样,在SSD中负责调度,控制和管理SSD,是SSD的数据中枢,不仅如此主控还负责ECC纠错、耗损平衡、坏块映射、读写缓存、垃圾回收以及加密等一系列的功能。

  SSD市面上基本有这几家主控厂商:Marvell,Samsung,JMF,慧荣SMI,Indilinx,SandForce,群联Phison。

  Marvell:中高端产品比较容易见到它的身影,其主控稳定,跑分不含水分,可谓中流砥柱,在主控中担当大哥的角色。多数中端MLC产品采用的是Marvell的主控,诸如浦科特,英睿达,镁光。要挑选中高端的SSD,该主控也是不错的选择。

  Samsung:三星自家的主控,只用在自家的SSD产品上,配合自家的3D V-NAND闪存,产品的口碑不错。

  JMF:主打低端市场,较为低端的主控,特点为性能不佳但便宜,采用此主控的SSD有影驰战将系列等,需求不高而又预算不多者可以考虑。

  慧荣SMI : 同上,中低端产品较多,相对JMF而言好那么一丢丢,感觉略为中庸吧。

  Indilinx:早些年之前,ocz(饥饿鲨)收购了indilinx,研发了自家的独立主控barefoot(目前出到6

  一、固态硬盘简介

  固态硬盘(Solid State Disk)都是由主控芯片和闪存芯片组成,简单来说就是用固态电子存储芯片阵列而制成的硬盘,其接口规范和定义、功能及使用方法上与普通硬盘的完全相同(.PC841.CoM),在产品外形和尺寸上也完全与普通硬盘一致。存储单元负责存储数据,控制单元负责读取、写入数据。拥有速度快,耐用防震,无噪音,重量轻等优点。广泛应用于军事、车载、工控、视频监控、网络监控、网络终端、电力、医疗、航空、导航设备等领域。

  (一)SSD固态硬盘的优点:

  7

  一、基于闪存类:

  基于闪存的固态硬盘(IDEFLASHDISK、SerialATAFlashDisk):采用FLASH芯片作为存储介质,这也是通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记本硬盘、微硬盘、存储卡、U盘等样式。这种SSD固态硬盘最大的优点就是可以移动,而且数据保护不受电源控制,能适应于各种环境,适合于个人用户使用。

  一般它擦写次数普遍为3000次左右,以常用的64G为例,在SSD的平衡写入机理下,可擦写的总数据量为64GX3000=192000G,假如你是个变态视频王每天喜欢下载视频看完就删每天下载100G的话,可用天数为192000/100=1920,也就是1920/366=5.25年。如果你只是普通用户每天写入的数据远低于10G,就拿10G来算,可以不间断用52.5年,再如果你用的是128G的SSD的话,可以不间断用104年!这什么概念?它像普通硬盘HDD一样,理论上可以无限读写,

  二、基于DRAM的固态硬盘

  基于DRAM的固态硬盘:采用DRAM作为存储介质,目前应用范围较窄。它仿效传统硬盘的设计、可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。应用方式可分为SSD硬盘和SSD硬盘阵列两种。它是一种高性能的存储器,而且使用寿命很长,美中不足的.是需要独立电源来保护数据安全。

  三、基于DRAM类:

  基于DRAM的固态硬盘:采用DRAM作为存储介质,应用范围较窄。它仿效传统硬盘的设计,可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。应用方式可分为SSD硬盘和SSD硬盘阵列两种。它是一种高性能的存储器,而且使用寿命很长,美中不足的是需要独立电源来保护数据安全。DRAM固态硬盘属于比较非主流的设备。

  硬盘基本知识 篇8

  1. 硬盘出现异响;

  2.系统无法正常启动或是硬盘报错,例如“Sector not found”;

  3.读写数据或是运行软件的时候,硬盘报读盘错误,例如“read disk error”;

  4.电脑突然蓝屏;

  5.无法完成格式化操作;

  6.FDISK操作无法完成;

  7.电脑运行速度很慢或者很卡

  硬盘出现坏道的`原因很多,例如,硬盘本身质量问题、使用中维护不当、不正确操作、使用中突然断电、撞击等。当硬盘出现坏道后,应该立刻备份重要数据,然后对坏道进行修复。由于坏道修复操作会破坏位于坏道及坏道附近的数据,所以应先备份重要数据。

  硬盘基本知识 篇9

  润滑层和碳覆层器机械和化学保护作用,保护下面的磁性层;磁性层通常为一层多层膜结构,常用材料有CrCoTa,CoNiPt,CrCoPtTa;缓冲层能显著提高磁性层的磁性能。基片的表面能、粗糙度影响缓冲层的生长,因此可通过对基片表面的精密加工来优化和改善磁性合金层的组织和性能。

  盘片材料

  盘片在工作与运输过程中会受到许多力的作用,如盘片的重力、盘片的随主轴高速旋转而产生的离心力,高速旋转时硬盘内空气湍流对盘片的作用等;在硬盘运输与携带过程中还会由于各种机械震动而使盘片受到冲击。特别是笔记本电脑和其它使用硬盘的手提式电脑中,盘片除了受到正常的接触启动/停止过程所带来的作用力外,磁头对盘片的冲击还会由于外界的震动而极度增大。这就要求盘片具有非常好的表面硬度和抗冲击性。在整个盘片中,由于磁性层、衬层、润滑层都是薄膜结构,基本上不具备必要的力学性质,因此盘片的机械性能主要由基板提供。因此选用的基板材料必须具备一定的力学强度与表面硬度。

  盘片以较高的转速旋转有利于硬盘快速读取与写入数据,但随转速的提高,硬盘内空气湍流对盘片的作用会急剧增大,盘片在此作用下会产生不规则振动,这种振动对盘片会造成极大的伤害;并且振动的振幅随主轴转速增大而增大,当转速增大到一定程度时,盘片会扭曲变形,是整个硬盘损坏。目前普通硬盘的转速为5400转/分钟,部分高档硬盘转速已达到7200转/分钟,IBM公司及日本日立公司等都发布了转速达到2000转/分钟的硬盘,下一步转速将项向14000转/分钟发展,那时盘片受到的.作用力将更大。由于材料的抗弯性能及共振频率与弹性模具有关,为了得到较高的转速,基板材料需具有较大的弹性模量。

  Al合金基板材料

  硬盘大部分都是采用Al合金基板。Al合金退火后,其硬度仅为0.9GPa,弹性模量仅为70GPa。因为Al合金自身的力学性能不够,无法抵抗磁头高转速带来的力学冲击,所以在Al合金上增镀了一层NiP来增强其力学性能。

  但是NiP层表面结构凹凸不平使得磁头的飞行高度无法降得太低,当硬盘磁盘表面具有波度时,磁头就会随着高速旋转的存储器硬盘的波动上下运动[3-4] 。如果波度超过一定的高度时,磁头就不再能随着波度运动,它就会与磁盘基片表面碰撞,发生所谓的磁头压碎,导致磁盘设备发生故障或读写信息的错误。另一方面当存储器硬盘表面上存在数微米的微凸起时也会发生磁头压碎,相反,当硬盘表面存在凹坑时就不能完整地写入信息,由此导致所谓的“比特缺损”或信息读出的失败。最近为了适应超高存储密度,磁头与硬盘磁面之间的距离已经减小到10nm以下[5] 。因此,在盘片表面抛光中,就要求制造出能够使磁头浮动高度更小、没有突起、划痕和凹坑的光滑表面。

  玻璃基板材料

  为了进一步提高硬盘驱动器的性能,人们希望得到一种更好的基板材料。玻璃,作为一种均匀致密的非金属材料,首先被人们选为NiP/Al基板的候选者。玻璃的刚度比铝合金大,适于制造薄盘,且可省却NiP层的涂覆。最重要静是玻璃宏观均匀的,在抛光过程中无塑性形变,能够得到非常光滑的表面,这就保证磁头飞行高度可以做得更低,从而为提高盘片面积密度提供可能。

  但由于玻璃是一种脆性材料,应用于高速旋转驱动器中需要解决的一个问题是玻璃表面裂纹扩展造成玻璃开裂的可能性。通过离子交换可以在玻璃表面产生一个压应力层,从而钝化裂纹尖端,阻止裂纹扩展,为了改进玻璃基扳的缺陷,人们又考虑采用微晶玻璃作为硬盘基板。微晶玻璃通过对特定化学组成玻璃的控制晶化而得到的多相固体。微晶玻璃具有高均匀的显微结构,无气孔且在玻璃向微晶玻璃转化过程中体积变化小,因此它具有优良的表面特性、力学性能、热稳定和化学稳定性,其强度与韧性都比其母体玻璃好;同时微晶玻璃的一个特点是其性能不仅与原始玻璃的化学组成有关,还在很大程度上决定于玻璃的热历史,这使得其各项性能在很大范围内具有可调节性,有利于满足不同环境的要求。